翻訳と辞書
Words near each other
・ Superclásico
・ Superclásico de las Américas
・ Superclásico de Quito
・ Supercoach
・ SuperCoach Finals
・ SuperCobra
・ Supercock
・ Supercoco
・ SuperCollider
・ Supercollider (disambiguation)
・ Supercollider / The Butcher
・ Supercombinator
・ SUPERCOMMUNITY
・ Supercommutative algebra
・ Supercompact
Supercompact cardinal
・ Supercompact space
・ Supercompensation
・ Supercomputer
・ Supercomputer (disambiguation)
・ Supercomputer architecture
・ Supercomputer Education Research Centre
・ Supercomputer operating systems
・ Supercomputer Systems
・ Supercomputing and Visualization Center of Madrid
・ Supercomputing Challenge
・ Supercomputing Facility for Bioinformatics and Computational Biology
・ Supercomputing in China
・ Supercomputing in Europe
・ Supercomputing in India


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Supercompact cardinal : ウィキペディア英語版
Supercompact cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties.
==Formal definition==

If λ is any ordinal, κ is λ-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point κ, ''j''(κ)>λ and
:^\lambda M\subseteq M \,.
That is, ''M'' contains all of its λ-sequences. Then κ is supercompact means that it is λ-supercompact for all ordinals λ.
Alternatively, an uncountable cardinal κ is supercompact if for every ''A'' such that |''A''| ≥ κ there exists a normal measure over ()< κ, in the following sense.
()< κ is defined as follows:
:()^ := \ \,.
An ultrafilter ''U'' over ()< κ is ''fine'' if it is κ-complete and \ \in U, for every a \in A. A normal measure over ()< κ is a fine ultrafilter ''U'' over ()< κ with the additional property that every function f:()^ \to A such that \ \in U is constant on a set in U. Here "constant on a set in ''U''" means that there is a \in A such that \ \in U .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Supercompact cardinal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.